Phthalimidesulfenyl Chloride Part 6¹. The First Example of an α-Oxothione Acting as Heterodiene: Synthesis of 2,3-Dihydro-1,4-Oxathiines.

Giuseppe Capozzi^{#a}, Stefano Menichetti^a, Cristina Nativi^a, Alessandro Rosi^a, and Richard W. Franck^b.

^aCentro C.N.R. "Chimica dei Composti Eterociclici". Dipartimento di Chimica Organica, Universita' di Firenze, via G. Capponi 9, I-50121, Firenze Italy. ^bHunter College, The City University of New York, Department of Chemistry, 695 Park Avenue, New York, N. Y. 10021-5024.

Key Words: Phthalimidesulfenyl chloride, α -oxo-thione, vinyl ethers, heterodiene, cycloaddition, 2,3-dihydro-1,4-oxathiines.

Abstract: α-α'-Dioxothione 3a acts as heterodiene undergoing 4+2 cycloaddition reactions with enol ethers with the regiospecific formation of 2,3-dihydro-1,4-oxathiines 5 in good yields. The reaction is very simple and quite general. Using this reaction the thiosugar derivative 5e has been also prepared.

Thiocarbonyl compounds have been successfully employed in the synthesis of complex structures², as well as for the construction of new carbon-carbon bonds³.

We have recently shown that phthalimidesulfenyl chloride 1 reacts with enolizable ketones or silyl enol ethers to give α -substituted ketones 2, and that the latter can easily generate the corresponding thione derivatives 3 which have been trapped by electron rich 1,3-dienes in a classical 4+2 cycloaddition reaction¹ (Scheme 1).

Scheme 1

In this communication we report that the α -oxothione **3a** (R=Me, R₁=COMe) can also act as heterodiene in reactions with electron-rich alkenes, e.g. enol ethers, to give rise to 2,3-dihydro-1,4-oxathiine derivatives⁴. The reaction is simply accomplished by adding pyridine to a CDCl₃ solution of **2a** and the vinyl ether **4** at

room temperature (Scheme 2).

The reaction progress, monitored by 1 H n.m.r., indicates that the formation rate of the heterocycle is dependent upon the nature of enol ether 4, and the relative ratio of the reagents.

The crude reaction mixture is washed with saturated NH_4Cl , the solvent is removed, and the resulting mixture extracted with *n*-pentane in order to separate the insoluble phthalimide. Isolation of the cycloadduct **5** is then accomplished by flash chromatography.

I.R. spectra and ¹H and ¹³C n.m.r. data strongly support the proposed structures of the cycloadducts $5a-e^{5,6}$. Yields of the products synthesized and reaction conditions are reported in the Table.

Table. Reaction of thione 3a with enol ethers 4a-e and pyridine ^a			
Enol Ether	Cycloadduct	Reaction Time (h)	Yields ^b (%)
100		2	80
4 a	Ö 5a		
Õ		20	90
4b	O 5b	· · · · ·	
OSiMe ₃ 4c	$\bigcup_{\substack{H \\ O \\ S}}^{O} \bigcup_{5c}^{OSiMe_3}$	40	80
0,0~ () 4d	$ \begin{array}{c} $	22	67°
BnO BnO BnO 4e	OBn BnO O BnO S 5e	168	88 ^d

^aThe reagents (3a:4:py=1:2:3 molar ratio) were mixed at room temperature.

^bIsolated yields. ^c Isolated as 80:20 mixture of diastereoisomers.

^d Ratio 3a:4e:py=2:1:6; yield is calculated on the converted 4e.

These data show that the reaction is strictly regiospecific and highly stereoselective. Indeed *ab initio* molecular calculations⁷ indicate a most favorable interaction between the LUMO of the thione and the HOMO of the enol ether and show higher coefficients on the C=S bond of the LUMO of **3a** and on the β -carbon of the HOMO of a model vinyl ether. Thus the reaction might be an inverse electron demand 4+2 cycloaddition, perhaps with a high polar character.

Moreover it has been possible to demonstrate by MO calculations⁷ that conformer A is only about 2 Kcal/mol lower in energy than conformer B (Scheme 3). We speculate that form B is required for the cycloaddition to succeed.

A remarkable stereoselectivity is exhibited by the reaction of 3a with the dihydropyran 4d (80 : 20 diastereometric ratio), while the reaction of 3a with tri-O-benzyl glucal 4e gives a single stereoisomer to which was assigned the structure shown in the Table⁸.

We have also examined the reactivity of 3a towards 2,3-dimethyl-2-butene 6 and (-)- β -pinene 7. In both cases we observed only a selective *ene* reaction⁹ with the formation of sulfides 8 and 9 respectively (Scheme 4).

On the other hand the reaction of 3a with *trans*-anethole 10, an alkene where cycloaddition and *ene* reaction might compete, gave the cycloadduct 11 as unique product (Scheme 5).

This result indicates that the two possible reaction paths are evenly balanced and that small modifications of the alkene structure can drive the reaction in a specific way.

A more detailed study on this matter and in particular the effect of both oxothione and alkene structure on reactivity is being currently investigated in these laboratories.

ACKNOWLEDGMENTS.

Authors wish to thank Prof. Vittorio Lucchini for molecular calculations and the MURST (Ministero dell'Universita' e della Ricerca Scientifica e Tecnologica, Italy) for financial support.

REFERENCES AND NOTES.

- 1. Capozzi, G.; Menichetti, S.; Nativi, C.; Rosi. A. Tetrahedron, 1992, 48, 9023-9032.
- 2. Vedejs, E; Reid, J. G. J. Org. Chem. 1987, 52, 4269-4274.
- 3. Metzener, P. Synthesis, 1992, 1185-1199.
- 4. To our knowledge only one report describing the synthesis of these heterocycles has been published: Asinger, F.; Saus, A.; Offermanns, H.; Scherberich, P. Liebigs Ann. Chem. 1971, 753, 151-168.
- 5. Relevant spectroscopic data for compound **5a** are as follows: ¹H n.m.r: 5.26 (X part of an ABX system, 1H); 4.02-3.85 and 3.77-3.61 (AB part of an ABX₃ system, 2H); 2.97-2.77 (AB part of an ABX system, 2H, J_{AB} =13.0 Hz); 2.30 (s, COMe, 3H); 2.28 (s, 3H); 1.26 (t, X₃ part of an ABX₃ system, 3H, J_{AX} = J_{BX} =7.1 Hz) δ . ¹³C n.m.r.: 195.62 (s, COMe); 158.03 (s, vinylic); 105.41 (s, vinylic); 96.56 (s. O-CH-O); 64.79 (t, O-CH₂); 29.67 (q, CH₃-CO); 28.63 (t, S-CH₂); 22.07 (q, CH₃-=); 15.04 (q, CH₃-CH₂) δ . I.R.: 2978-2928 (C-H stetc.); 1673 (C=O strect.); 1562 (C=C stretc.); 1246 (C-O stretc.) cm⁻¹. Mass Spectrum (M/z, %): 202 (M⁺, 27%); 160 (M-42, 32%), 72 (M-130, 57%), 43 (100%). Elemental Analysis: Calculated for C₃H₁₄O₃S: C 53.44%, H 6.98%; Found: C 53.56%, H 7.19%. All other compounds synthesized show correct elemental analysis and consistent spectral data.
- 6. Cis junction in compounds 5b and 5d is strongly supported by the ³J values between hydrogens at C-9 and C-10 which are 2.7 Hz for 5b and 2.4 and 2.9 Hz for the major and the minor diastereisomer of 5d respectively.
- 7. Ab initio molecular calculation have been performed with the SPARTAN program at 3-21G^{*} level.
- Assignment has been possible using the ³J value between the hydrogens laying in position 1, 2 and 3: the values of 3.0 Hz for J_{H1-H2} and 10.3 Hz for J_{H2-H3} are as expected for an equatorial-axial-equatorial arrangement of the hydrogens.
- a) Bladon, C. M.; Ferguson, I. E. G.; Kirby, G. W.; Lochead, A. W.; McDougall, D. C. J. Chem. Soc., Perkin Trans. 1 1985, 1541-1545; b) Kirby, G. W.; McGregor, W. M. J. Chem. Soc., Perkin Trans. 1 1990, 3175-3181; c) Snider, B. B.; Hrib, N. J.; Fuzesi, L. J. Am. Chem. Soc. 1976, 98, 7115-7117.

(Received in UK 30 March 1993)